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Abstract

Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. Well log data are

frequently available to infer this parameter along drilled wells. Many fundamental problems remain unsolved by
most predictive models. This paper introduces the use of an improved neural network trained by an observational
learning algorithm to provide solutions for two particular problems: the generation of additional or ``virtual''
samples when the number of training data is insu�cient; and the generation of multiple permeability values at the

same reservoir depth for reliability analyses. The methodology is illustrated by a case study in western Australia.
Four drilled wells with well logs and core permeability are used in this study. The data from the ®rst two wells are
used for training, while the others are used as unseen data to test the performance of the model. The results show

that the proposed method gives smaller error compared to multiple linear regression and other neural networks
(simple committee networks and bootstrap aggregating). It also provides valuable information on the reliability of
the permeability predictions which is consistent with the geological studies. 7 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Reservoir permeability is a critical parameter for the
evaluation of hydrocarbon reservoirs. The most accu-

rate method to date for measuring such an important
property is core analysis. It is well known that closely-
spaced core permeability values are often not available

because of unfavourable wellbore conditions and high

cost of coring. Well log data, however, are abundant

and are frequently used to infer permeability along the
drilled wells. Although no well log is currently capable
of measuring permeability directly, correlating well

logs with core permeability at the cored well has
become a common practice in the industry. The sub-
sequent correlation model can be used to predict per-

meability at the uncored intervals and wells, providing
appropriate well logs are available.
Many empirical equations are available to transform

well log data to permeability (Coates and Dumanoir,
1973; Johnson, 1994). These models often require a
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labour-intensive exercise to adjust constants or expo-
nents or to introduce compensations. Despite these ob-

servations, theoretical relations between permeability
and porosity have been sought. For example, Kozeny-
Carmen theory relates permeability to porosity and the

speci®c area of a porous rock with pores treated as an
idealised bundle of capillary tubes. This theory treats
the highly complex porous medium in a very simple

manner and ignores the in¯uence of conical ¯ow in the
constrictions and expansions of ¯ow channels.
The statistical approach is comparatively a more

versatile approach to the problem of permeability pre-
diction. It makes use of the available core permeability
(the dependent variable) and develops functional re-
lationships with the well log data (the independent

variables). It, however, requires the assumption and
satisfaction of multi-normal behaviour and linearity,
and hence it must be applied with caution.

Besides statistical methods, neural networks, or
more speci®cally, multilayer perceptrons (MLP), have
become increasingly popular in well log analysis. This

intelligent technique is non-linear and non-parametric,
and has been applied to permeability prediction from
well logs. Recent comparison studies have shown that

MLP gave better performance compared to empirical
equations (Balan et al., 1995; Malki et al., 1996) and
statistical methods (Huang et al., 1996; Mohaghegh et
al., 1995; Rogers et al., 1995; Wong et al., 1995, 1998).

While MLP have been shown to have great promise in
permeability prediction, none of the previous studies
report any information about the reliability of the esti-

mates. The other important problem in applying such
methods in practice is how we can obtain a su�ciently
good estimator trained by only a small data set. These

are in fact critical issues in geosciences.
The objective of this work is to provide an improved

MLP method trained by an observational learning al-
gorithm, via the use of multiple networks and the gen-

eration of virtual samples (see later sections), to
estimate permeability from well logs in petroleum
reservoirs. The proposed methodology makes use of

appropriate well log and core permeability to provide
multiple permeability predictions at every reservoir
depth. The approach is signi®cant in that it is simple,

easy to implement and permits evaluation of the re-
liability of the permeability predictions.

2. Multilayer perceptrons

2.1. A typical model

Multilayer perceptrons (MLP) are popular for devel-

oping highly non-linear relationships between known
inputs and outputs. They are particularly useful for
solving pattern recognition problems. A typical model

is shown below:

f �x� � g

0@b0 �Xm

j�1
bj � g

 
a0j �

Xn
i�1

aij � x i

!1A �1�

and

g�z� � �1� eÿz�ÿ1 �2�
where x � x 1 . . . xn� represents n types of well log
values at every sampled depth, a, b are coe�cients (or

``weights'') and f(�) is the permeability estimator. g(�) is
a transfer function which increases the non-linearity
and complexity of the relations. Eq. (1) is also a uni-

versal function approximator which can ®t any con-
tinuous function with a desired precision (Funahashi,
1989). Note that if g�z� � z, Eq. (1) becomes the stan-
dard multiple linear regression estimator.

With the use of a set of known data pairs or training
patterns, f�xk, yk� j k � 1 . . . npg, where np is the num-
ber of patterns and y is the target variable, which can

be obtained from the cored wells after proper depth-
matching exercise, the connection weights a, b can be
approximated using a variety of gradient-based optim-

isation algorithms (Bishop, 1995), or other random
search routines such as genetic algorithms (Huang et
al., 1998). This paper uses the Levenberg-Marquardt

algorithm (Bishop, 1995), a kind of quasi-Newton
method, which is faster than the conventional backpro-
pagation algorithm (Bishop, 1995).
Like most optimisation algorithms, the Levenberg-

Marquardt algorithm requires a set of initial weights
(randomised values) as the starting point. The weights
are iteratively updated in such a way that the objective

function is optimised. A typical objective function is
the mean square error (MSE):

MSE � 1

np

Xnp

k�1
� f �xk� ÿ yk� 2: �3�

The network can be optimised by lowering the MSE

with respect to a, b: The estimator can then be used to
predict permeability at the uncored intervals or wells
where the same well logs are also available.

2.2. Multiple predictions

Most neural network studies reported in geosciences
provide only a single realisation of the predictions. It
is, however, important to infer the reliability of each

and every prediction along the wells because predic-
tions involve uncertainty. Two reasons are given here:

1. Most well log data and core permeability values are

corrupted by ``natural noise'' (such as uncertain
depth-matching, core testing conditions, thin bed-
dings);
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2. Core permeability and log-derived permeability are
not of compatible measurement scales as they

measure di�erent volumes of rock.

In order to account for the reliability of the predic-
tions, it is necessary to have a distribution of predic-

tions at the same reservoir depth along the drilled
wells. Many neural network methods are available for
generating a distribution of outputs but are still not

yet popular in petrophysical evaluation. Examples are
the use of multiple (or a committee of) networks or
the more recent Bayesian networks (MacKay, 1992).

With the use of an input vector, the former provides
multiple predictions, while the latter provides the mean
and the variance of the predictions.

In this study, we use a multiple network because of
its simplicity and its ¯exibility to provide any number
of predictions. Once multiple predictions are produced,
it is straightforward to obtain the corresponding stat-

istical information (e.g. minimum, average and maxi-
mum values).
A simple committee network (Sharkey, 1996) is an

example of multiple networks. This committee of net-
works is composed of a set of networks with di�erent
initial weights while holding all the other parameters

of the network constant. With di�erent initial weights,
each network is trained by the gradient descent algor-
ithm and is able to produce di�erent outputs. It has
been shown to be more e�ective than a single network

in terms of generalisation performance (Parmanto et
al., 1996). The ®nal output can be computed as a
simple average of the outputs produced by the individ-

ual networks, or we can treat each individual output
as a realisation of a random process. We can also con-
struct a local probability distribution function at each

estimation point and perform stochastic simulation,
such as the use of Monte Carlo sampling to simulate a
®nal output.

The other popular way to generate multiple predic-
tions is bootstrap aggregating or ``bagging'' (Brieman,
1994). Bootstrapping replicates a multitude of training
data sets by sampling with replacement from the orig-

inal data set. These bootstrapped data sets are then
used to train a committee of networks and produce
multiple predictions as in the simple committee net-

works. The major di�erence between a simple commit-
tee network and bagging is that one uses di�erent
initial weights while the other uses di�erent training

data sets. Use of di�erent initial weights in bagging is
also possible.

3. Observational learning algorithm

MLP are examples of universal function approxima-

tors. In practice, however, there are several factors
which make it di�cult to ®t a continuous function

accurately. The major assumption is that a su�cient
number of well-represented training samples are avail-
able. In many real world problems, training patterns

are expensive to obtain. Since the problem complexity
dictates the size of the network, we may end up with
too few training patterns for a network of a certain

size. This results in over-®tting and hence poor gener-
alisation.
In Cho et al. (1997), a technique known as ``virtual

sampling'' was proposed to improve generalisation by
arti®cially generating ``virtual samples'' from a com-
mittee of networks and using them to train the net-
work in addition to the original training patterns. This

technique has been applied to permeability and poros-
ity prediction from well logs and the results were
improved by 10% and 35% respectively (Cho et al.,

1998; Jang et al., 1998). Observational learning algor-
ithm is the improved virtual sampling technique with
the incorporation of bootstrapping.

Observational learning is found among children
(Bandura, 1971) who learn not only by doing but also
by observing other children. This approach can be im-

plemented by treating each trained network as a child.
A virtual sample is then generated by picking a nearby
point of a real sample for its input. The output part of
the virtual sample is then determined by observing

what the networks in the committee produce as output
when the newly picked input is given. A single output
could be obtained by averaging the output values, or

all the output values could be used.
The learning algorithm for a multidimensional data

set can be described as follows. Consider L neural net-

works, fi, i � 1 . . .L, and original data set, D � f�xk,
yk� j k � 1 . . . np�, where xk � �x 1

k . . . xn
k� and yk �

� y1k: : yq
k� are n and q dimensional vectors, respectively.

First, in order to construct di�erent training data sets

for individual networks, the bootstrapping method is
employed as follows. Let si denote the index of the
data element which was selected at the ith time. The

initial training data set for network fi is then de®ned
as Di � f�x s, ys� . . . �x snp

, ysnp
�g:: Since the elements are

selected with replacement, duplicates among the el-

ements in Di exist. By repeating this process for L net-
works, we construct initial data sets for individual
networks.

After creating the initial training data sets, the train-
ing step (T-step) and observation step (O-step) are
repeated for G epochs. Value G is empirically set. In
the T-step, the weights of a neural network are

updated using both its initial data and virtual data
sets. At epoch t, weights are updated as follows:

wt�1
i � wt

i � Dwt
i �4�
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where wt
i is a set of weights of the network fi and Dwt

i

is the weight change. For normal backpropagation

training, the weight change is given by Dwt
i �

ÿZirE�wi �, where Zi is the learning rate and E�wi � is
the standard mean square error function.

After updating the weights of the individual net-
works in the T-step, the virtual data for each network
are generated from the other networks in the O-step.

The virtual data of network f t
i are generated as fol-

lows: At ®rst, an input vector, x sj , is selected from the
initial data set, Di, and a virtual input vector vsj is cre-

ated by adding a Gaussian noise with a zero mean and
a covariance of S. Then, the virtual output vector cor-
responding to the input is computed using the ÿi
ensemble, i.e., an ensemble output without network fi,

which is denoted as �f
t

ÿi: A variety of methods for con-
structing a consensus output exists. For this study, we
employed an averaging method. The virtual data gen-

erating process is repeated for all data in Di: We now
generated a virtual data set which is of the same size
as the initial data set. In order to construct the virtual

data sets for all individual networks, this process is
again repeated L times. Now after this O-step is ®n-
ished, each member is incrementally trained with both

the newly generated virtual data set and the initial
data set.
After the T- and O-steps are repeated for G epochs,

the ®nal output of the ensemble is computed by the

simple averaging method as:

�f
G � 1

L

XL

i�1
f G

i : �5�

The observational learning algorithm can be summar-
ised as follows:

1. Let the number of networks in the committee be L.
2. Let Di, i � 1 . . .L be the bootstrapped data sets

from the original data set D.

3. Repeat the following two steps during G epochs: T-
step. For each network fi, weights are updated as
follows:

E t
i�wi � �

X
�x, y�2Di[Vÿi

� f t
i�x� ÿ y� 2 �6�

wt�1
i � wt

i ÿ ZirE t
i�wi � �7�

O-step. For each network fi, i � 1 . . .L, the obser-

vational data set Vÿi is generated as follows:

Vÿi � f�vsj ,
�f
t

ÿi�vsj � j vsj0N�x sj , S�, x sj 2 Di,

j � 1 . . . npg
�8�

where

�f
t

ÿi �
1

Lÿ 1

XL

j�1, j 6�i
f t

j: �9�

4. Obtain the outputs by simple averaging:

�f � 1

L

XL
i�1

fi: �10�

In this study, we empirically set the covariance by a di-
agonal matrix with diagonal elements set to 0.01. In

practice, the observational learning algorithm is robust
to the parameter.

4. Case study

4.1. Objective

In this paper, we used a data set from the North
West Shelf (o�shore western Australia) which has well

logs and core permeability from four oil and gas wells.
The formation contains many thin beds composed of
eleven dominant lithofacies. The major lithofacies are
sandstone, mudstone, carbonated-cemented facies, con-

glomerate and glauconite. The well logs used for the
analyses are gamma ray, deep resistivity, sonic travel
time, bulk density and neutron porosity. Two wells

(Well 1 and Well 2) were used for training and net-
work optimisation. The other two wells (Well 3 and
Well 4) were used to blind-test the model.

In this study, we compared the performance of four
di�erent estimators: multiple linear regression (MLR),
simple committee networks (SCN), bagging (BAG)

and the observational learning algorithm (OLA). Once
we obtain the results, we will evaluate the reliability of
the models by comparing the predictions with the core
permeability. The indicator used for performance com-

parison was the MSE as shown in Eq. (3). We will
achieve this task by evaluating if the average predic-
tion is close to the core data at the test wells.

4.2. Model setup

In this study, we used seven input neurons (six for
well logs and one for lithofacies indicator) and one
output neuron (permeability). All the data were nor-

malised in the range of (0,1). The number of data pairs
available in each of the four wells is 152, 156, 115 and
140, respectively. The ®rst two wells were used for

training and the last two wells were used for testing.
Five-fold cross-validation was used to determine the

optimal number of hidden neurons. A range of 2±10

hidden neurons was tried and the minimum average
validation error was found when there were 5 hidden
neurons. Ten (L=10) networks were used in the com-
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mittee and each network was trained by the Leven-
berg-Marquardt algorithm. In this study, the same
number of virtual samples as the original training

samples (308) were generated (i.e. G = 308). This was
used as the termination criterion for the observational
learning. Hence, a total of 716 patterns was used for

observational learning.

4.3. Results

After training, the networks were applied to the last

two wells for prediction. Since L= 10, we obtained 10
predictions for each reservoir depth. The results are

summarised in Table 1. The minimum, average and
maximum MSEs were computed for each test well.

Note that only one prediction at each depth was
obtained from MLR. Di�erent MLR models were

developed for di�erent lithofacies for improved per-
formance (Wong et al., 1995). Three of the eleven

facies, however, did not have enough data pairs for

their individual MLR models. Hence they were lumped
into one cluster. This resulted in a total of 9 MLR

models. The MSEs of the test wells were 0.0121 and
0.0146 respectively. Since MLR is a linear model,

therefore its MSE could be set as the maximum accep-
table error for the non-linear neural networks. The

MLR's MSEs were also used as the basis for compari-
son.

From Table 1, the average results from the SCN

Table 1

Mean square errors (�10ÿ2) for di�erent estimators. MLR is

multiple linear regression, SCN is simple committee network,

BAG is bagging and OLA is observational learning algorithm

Well 3 Well 4

Min Mean Max Min Mean Max

MLR 1.210 1.461

SCN 0.709 1.108 2.091 0.714 0.939 1.717

BAG 0.773 2.703 7.907 0.747 2.212 7.154

OLA 0.665 0.741 0.841 0.758 0.838 0.999

Fig. 1. Permeability pro®les (min, max) derived by observational learning algorithm at test wells. Note that permeability values are

normalised.
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(1.108) were better than those obtained from the MLR

in both of the test wells with a much greater improve-

ment in Well 4 (36%). Hence a committee of networks

using di�erent initial weights provided more robust

results than MLR.

The BAG results were unsatisfactory. The MSEs

were 123% and 51% larger than MLR's in Well 3 and

Well 4 respectively. This was due to its ability to gen-

erate a wider range of predictions resulting from di�er-

ent training sets. This problem is worse if there is only

a small number of training patterns as each of the

bootstrapped data sets has a higher probability to con-

tain the same training pattern. Generally speaking, the

BAG predictor is expected to perform better if we use

a larger number of networks, say L > 50, which is

computationally more expensive.

The other practical solution for improving BAG per-

formance is to increase the number of training patterns

which is the basic objective of virtual sampling. As

shown in Table 1, the average results of OLA were

best with 39% improvement in Well 3 and 43%

improvement in Well 4 compared to MLR.

For visualisation purposes, we plotted the results
showing the minimum and maximum predictions

(obtained from the 10 predictions) at each depth. Fig. 1
shows the OLA-derived permeability pro®les for the
test wells together with the core permeability. The

minimum and maximum predictions are also shown.
In order to assess the reliability of the predictions, one
may look at the range of predictions (R ) as the uncer-

tainty indicator:

Rk � maxf fi�x k�gL1 ÿminf fi�x k�gL1 : �11�

Using the above indicator, the predictions become
more unreliable when R is large. Fig. 2 shows the
OLA-derived R pro®les for both of the test wells. The
pro®les were consistent with the geological studies as

R is large when there is a rapid facies transition. This
is mainly due to the physical limitation of well logs as
the log measurements are strongly a�ected in the pre-

sence of thin beds (the ``shoulder'' e�ect), and hence
log-derived permeability values from any methods are

Fig. 2. Range (R ) pro®les derived by observational learning algorithm at test wells.
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less reliable. This information is valuable for making
subsequent modelling decisions.

5. Conclusions

This work introduces the use of an observational
learning algorithm to predict permeability from well

logs based on a given set of training patterns. The
technique is implemented in multilayer perceptrons
(neural networks) and is particularly useful when there

are insu�cient training patterns. It also generates mul-
tiple predictions at the same estimation point. The
technique is demonstrated via a ®eld example in o�-
shore western Australia. Four drilled wells with well

logs and core permeability are used in this study. The
data from the ®rst two wells are used for training,
while the others are used as unseen data to test the

performance of the model. The results show that the
proposed method gives smaller error compared to mul-
tiple linear regression and other neural networks

(simple committee networks and bootstrap aggregat-
ing) and produces valuable information on the re-
liability of the permeability predictions.
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